4370
需用时 08:44
寻找外星文明:他们究竟在哪里?
基特峰国家天文台上方星空的照片,白色方框标示的是开普勒望远镜的视场,照片中用衍射光栅展现出了一些亮星的光谱 (图片: J. Glaspey;P. Marenfeld,via kmanskies.8m.net)

基特峰国家天文台上方星空的照片,白色方框标示的是开普勒望远镜的视场,照片中用衍射光栅展现出了一些亮星的光谱 (图片: J. Glaspey;P. Marenfeld,via kmanskies.8m.net)

人类在宇宙中是否孤独?除了我们地球以外,其他地方是否存在生命,是否存在拥有技术文明的智慧生命?面对这样一个终极问题,我们一度只能全凭猜测,不过答案似乎应该相当乐观。毕竟地球不过是普普通通的一颗行星,围绕着太阳这颗普普通通的恒星运转,而宇宙又是如此浩瀚——像太阳一样的恒星仅银河系中就有上千亿颗,更不用说银河系这样的星系在宇宙中还有上千亿个了。如果只有地球存在文明,那未免也太浪费了。


从 “奥兹玛” 到 SETI:宇宙中到底存在多少外星文明?

那么,宇宙中到底存在多少外星文明?1961 年,美国天文学家弗兰克 · 德雷克提出了一个后来以他名字命名的公式,试图估算银河系内掌握无线电技术的外星文明的数量。按照他的公式,有能力与我们进行星际通讯的外星文明的数量跟诸多不确定因素有关,包括银河系里恒星的数目、恒星拥有行星的概率、行星适宜生命生存的概率、宜居行星上诞生生命的概率、生命演化出智慧的概率、智慧生命发展出无线电通讯的概率,以及这样的文明向外发出可探测电波的平均时间。

之所以强调 “掌握无线电技术”,不光是因为当时这是人类掌握的速度最快的星际信息传递方式(其实现在也仍是如此),更是因为德雷克提出这一公式的初衷:不是为了纯粹从理论上估算外星文明的数量,而是要实实在在地为寻找外星文明的首次尝试提供一个具体的目标。就在提出这一公式的一年之前,德雷克利用美国绿岸天文台巨大的射电望远镜(本质上就是无线电天线),尝试在其他恒星周围搜寻智慧生命发出的无线电信号,史称“奥兹玛”计划。

德雷克的 “奥兹玛” 计划没有收到任何来自外星人的信号,但搜寻地外智慧文明的 “SETI 计划” 却由此铺开,时断时续一直持续至今。如今,50 多年过去了,SETI 计划仍然一无所获。德雷克本人对此并未灰心丧气,因为在他看来,尚未截获外星人 “电报” 是正常的,因为我们监听的恒星还不够多!

根据德雷克自己提出的方程式,他估计银河系内现存拥有无线电通讯能力的智慧文明大约有 1 万个。按照这个看似相对保守的估计,银河系内的上千亿颗恒星之中,平均每千万颗恒星才拥有一个这样的文明。换句话说,想要能够比较有把握地截获外星人发出的讯号,我们至少得扫描上千万颗恒星才行——而天文学家迄今为止监听过的恒星,还远远达不到这一数量。

位于波多黎各岛的阿雷西沃山谷中的阿雷西博天文台(Arecibo Observatory),这是世界上最大的单面口径电波望远镜,直径达 350 米,由康奈尔大学管理。阿雷西博望远镜是固定望远镜,不能转动,只能通过改变天线溃源的位置扫描天空中的一个带状区域(boinc.us)

位于波多黎各岛的阿雷西沃山谷中的阿雷西博天文台(Arecibo Observatory),这是世界上最大的单面口径电波望远镜,直径达 350 米,由康奈尔大学管理。阿雷西博望远镜是固定望远镜,不能转动,只能通过改变天线溃源的位置扫描天空中的一个带状区域(boinc.us)

不过,在 2010 年纪念 “奥兹玛” 计划 50 周年的仪式上,德雷克对 SETI 计划的未来表示乐观。天文学家监听无线电信号的技术与当年相比早已不可同日而语。在纪念仪式上,德雷克重新操作那台射电望远镜,短短数秒就重复了当年好几个月才能完成的监听。再加上计算机数据处理速度的大幅提升,从事 SETI 项目的天文学家预期,未来二三十年内他们监听的恒星数量就将达到千万颗量级。

因此,天文学家或许有较大把握,能够在未来二三十年内,接收到来自外星人的无线电信号,从而获得确凿的第一手证据,表明我们在宇宙中并不孤独。但也有可能,在监听了千万颗恒星之后,外星文明依旧对我们保持着可怕的无线电静默。果真如此的话, SETI 计划或许就永远截获不到外星人的 “电报” 了。可能是我们监听的方式不对,也可能德雷克的估计太过乐观——银河系中技术文明的数量极为罕见,甚至我们真的是孤独的。

事实上,德雷克估计错误的可能性相当大。他的公式刚被提出时,其中的每一个因素,确切数值几乎都无法确定,因此他的估计比凭空猜测好不了多少。不过,在 50 多年后的今天,天文学家起码已经确定银河系中拥有千亿颗恒星。而现在,他们正在努力寻找太阳系外可能适宜生命生存的行星。他们最趁手的 “秘密武器”,是 2009 年发射升空的开普勒望远镜。


开普勒项目:探照外星文明所在的行星

我们知道,行星本身是不发光的,只能反射来自恒星的光芒,因此两者在亮度上差异悬殊。如果把恒星比作强光探照灯,行星最多只能算是萤火虫,还是紧贴在探照灯灯罩上环绕它飞行的萤火虫。于是,寻找外星文明可能落脚的行星,就类似于遥望探照灯光,去确定那里有没有萤火虫在飞舞。

显然,想用望远镜直接看到那些萤火虫是不太现实的,因为萤火之光会被探照灯耀眼的光亮所淹没。不过有些时候,萤火虫也会从探照灯前方飞过,小小的身影会短暂遮挡部分探照灯的光芒。在远处观察的我们,就会发现探照灯的灯光突然暗了一下——虽然幅度极小,却足以令我们察觉到了。

开普勒11(Kepler-11)艺术概念图。开普勒11 是一颗类似太阳的恒星,位于天鹅座,距离地球约 2000 光年,至少有 6 颗公转周期很短的外星行星围绕该恒星运转。这颗恒星是开普勒太空望远镜在小范围巡天时发现的。从地球的方向观察开普勒11 的 6 颗行星会发现,所有行星在凌日时会从恒星盘面通过;且这些行星位置和地球上观测者观测方向的夹角小于 1 度。开普勒11 是第一个被发现的同时有多于 3 颗行星凌日的外星行星系统。

开普勒11(Kepler-11)艺术概念图。开普勒11 是一颗类似太阳的恒星,位于天鹅座,距离地球约 2000 光年,至少有 6 颗公转周期很短的外星行星围绕该恒星运转。这颗恒星是开普勒太空望远镜在小范围巡天时发现的。从地球的方向观察开普勒11 的 6 颗行星会发现,所有行星在凌日时会从恒星盘面通过;且这些行星位置和地球上观测者观测方向的夹角小于 1 度。开普勒11 是第一个被发现的同时有多于 3 颗行星凌日的外星行星系统。


行星围绕恒星公转的轨道,要比萤火虫的飞行路线规则得多,因此这样的现象会周期性出现。开普勒望远镜就是用这种方法来寻找外星行星的。自 2009 年升空以来,它便一刻不停地监测着大约 15 万颗恒星,记录它们亮度上的细微变化。如果观察到某颗恒星出现周期性的星光变暗,至少观察到 4 次之后,便可以确定那里存在一颗我们看不见的行星。

然而,找到了外星行星也还是不够的。行星是否适宜生命生存,要看它距离恒星是否恰到好处——距离太近,行星就会过热,水会被彻底蒸干;距离太远,行星则会太冷,水会被完全冻结。每颗恒星周围都存在这样一个既不太近、也不太远的区域,被称为 “宜居带”。只有在宜居带内环绕恒星公转的行星,液态水才有机会在它的表面长期存在,类似我们这样的生命也才有机会在那里诞生、繁衍和演化。

2011 年 12 月 5 日,开普勒任务组宣布,他们首次在另一颗恒星的宜居带中找到了一颗行星。这颗行星被称为 “开普勒-22b”,距离地球大约 600 光年,围绕母星公转一圈需要 290 天。它的半径仅有地球的大约 2.4 倍,是迄今为止在宜居带中找到的外星行星中体积最小的一颗。不过,天文学家仍然无法确定,开普勒-22b 就一定适宜生命生存,因为除了到恒星的距离以外,其他因素也会影响一颗行星是否宜居,比如行星的大小。

目前世界上最大的可移动射电望远镜,绿岸射电望远镜(The Robert C. Byrd Green Bank Telescope,GBT)。该望远镜约 43 层楼高,直径 110 米,望远镜的反射面由 2000 多块小反射板拼接而成,整个系统使用了精密的自动控制技术,它同时也是当年最早用来搜寻外星人信号的射电望远镜。绿岸位于人烟稀少的弗吉尼亚州边界,周围的群山是天然的无线电波屏障。为了排除一切可能的干扰,一丝微波,汽车发动机的一个火花在这片区域内都是绝对禁止的(mwvastronomy.net)

目前世界上最大的可移动射电望远镜,绿岸射电望远镜(The Robert C. Byrd Green Bank Telescope,GBT)。该望远镜约 43 层楼高,直径 110 米,望远镜的反射面由 2000 多块小反射板拼接而成,整个系统使用了精密的自动控制技术,它同时也是当年最早用来搜寻外星人信号的射电望远镜。绿岸位于人烟稀少的弗吉尼亚州边界,周围的群山是天然的无线电波屏障。为了排除一切可能的干扰,一丝微波,汽车发动机的一个火花在这片区域内都是绝对禁止的(mwvastronomy.net)

相对于地球而言,开普勒-22b 还是稍大了一些,体积超过地球 10 倍以上。这么大的行星,天文学家无法确定它是否像地球一样,是一颗主要由岩石构成的固态星球。如果它更像是太阳系里的天王星和海王星,我们人类或者类似的生命便无法在那里 “立足”,因为那样的星球主要由气体构成,根本不存在陆地和海洋这种概念。只有体积与地球类似,甚至更小的行星,天文学家才能断言它们是类地行星,拥有固体的表面。

就半个月后,即 12 月 20 日,开普勒任务组再次宣布,他们找到了这样的行星,而且找到了两颗!这两颗行星围绕距离地球约 950 光年的同一颗恒星运转,其中 “开普勒-20e” 比金星略小,半径是地球的 0.87 倍,“开普勒-20f” 则比地球略大,半径是地球的 1.03 倍。不过可惜的是,这两颗确凿无疑的类地行星,都不在恒星的宜居带中。它们距离母星太近,表面温度都高达好几百摄氏度,不适宜我们这样的生命生存。

这两项发现,无论是对于开普勒望远镜来说,还是对于人类寻找外星文明的历程来讲,都具有里程碑式的意义,因为距离真正找到一颗适宜生存的类地行星似乎只有一步之遥了。不过,找到这样一颗行星并不是天文学家把开普勒望远镜送入太空的首要目的。通过对这 15 万颗恒星的小规模抽样调查,天文学家想弄清楚银河系中有多少恒星拥有行星,又有多少行星适宜生命生存。

迄今为止,开普勒在这些恒星周围共发现 2326 颗疑似行星的候选者,其中有 48 颗可能位于 “宜居带” 中。尽管还有待进一步证实,但这一数字意味着,大约 10% 的恒星都有行星在其宜居带中环绕它们运转。换句话说,德雷克公式中的第二和第三项因素,未来几年内将被确定下来,恒星周围拥有宜居行星的概率很可能不低。

了解更多信息,可以访问 NASA 开普勒项目官网

[上] 开普勒望远镜发现的候选行星数量,其中,地球大小的行星有 68 颗,“超级地球”指体积介于地球与海王星之间的行星,“超级木星”指体积比木星还大的行星(nanopatentsandinnovations.blogspot.com)[下]开普勒望远镜发现的候选行星分布图,右边方块区域为开普勒望远镜的视场,位于银河系中天鹅座与天琴座之间的区域(NASA/Kepler Mission/Wendy Stenzel,via alum.mit.edu)

[上] 开普勒望远镜发现的候选行星数量,其中,地球大小的行星有 68 颗,“超级地球”指体积介于地球与海王星之间的行星,“超级木星”指体积比木星还大的行星(nanopatentsandinnovations.blogspot.com)[下]开普勒望远镜发现的候选行星分布图,右边方块区域为开普勒望远镜的视场,位于银河系中天鹅座与天琴座之间的区域(NASA/Kepler Mission/Wendy Stenzel,via alum.mit.edu)


他们究竟在哪里?

可是,如果适宜生命的环境在银河系内相当普遍,那么 “他们在哪里” 呢?这是诺贝尔物理学奖得主、大物理学家恩里科 · 费米在 1950 年,在德雷克启动外星文明搜寻计划的 10 年之前,就提出的一个问题。他问的,不是地球以外生命存在于何处,而是外星智慧生命为何没有造访过地球——或者说,为什么我们找不到他们来过地球的可靠证据。

毕竟,就算以人类目前慢如蜗牛的飞行速度展开宇宙大航海时代,也只需要 500 万到 5000 万年就能殖民整个银河系。虽然看似漫长,但跟宇宙上百亿年的历史相比,这不过是转瞬之间。更何况,人类文明短短几千年就发展到如今这个地步,如果有智慧文明在技术上领先我们上万乃至上亿年,他们为什么还没有占领我们的地球呢?

这个问题的答案,可能就隐藏在德雷克公式的后一半因素之中——即使环境适宜,生命的诞生或许也堪称奇迹;即使生命出现,演化出智慧或许也极为罕见;即使智慧出现,发展出技术文明的或许也只有凤毛麟角;又或许,技术文明并不罕见,但它们都如昙花一现,没能存活多久便烟消云散了。

对于这些因素,科学家仍摆脱不了 “基本靠蒙” 的尴尬境地。但对于外星文明的搜寻、对于外星宜居类地行星的探索,或许能让我们更清楚地认识到,人类文明的出现即使是在浩瀚的宇宙之中,可能也是一个并不多见的一个奇迹。

探索仍在继续,我们或许终将找到外星文明,或者证明自己确实是孤独的——如果在此之前,人类文明还没来得及消亡的话。


文章题图:Getty Images


The End

发布于2012-02-01, 本文版权属于果壳网(guokr.com),禁止转载。如有需要,请联系果壳

举报这篇文章

Steed

专业级业余天文爱好者

pic