求牛顿开方法的算法及其原理,此算法能开任意次方吗?

推荐  (2) | 6人关注关注
1个答案
25 0

傅里叶变黄油猫软件工程师,应用数学专业

2013-05-04 14:03

其实牛顿开方法是牛顿迭代法在开平方上的应用,牛顿迭代法同时也能快速逼近很多方程的解,自然可以用来开任意平方。

,即求的正根。

更一般地,求,即求的正根。

注意牛顿迭代法只能逼近解,不能计算精确解。不过实际应用中,我们都不要求绝对精确的解,例如计算器得出结果也不需要给出无限位,只需要给出十几位小数就足够了,所以牛顿迭代法被广泛用在各种科学计算中。

【牛顿迭代法】

假设方程 附近有一个根,那么用以下迭代式子:

依次计算、……,那么序列将无限逼近方程的根。

牛顿迭代法的原理很简单,其实是根据f(x)在x0附近的值和斜率,估计f(x)和x轴的交点,看下面的动态图:

【用牛顿迭代法开平方】

令:

所以f(x)的一次导是:

牛顿迭代式:

随便一个迭代的初始值,例如,代入上面的式子迭代。

例如计算,即a=2。



……


计算器上可给出

【用牛顿迭代法开任意次方】

的递推式是:

查看更多

添加回答

登录 后回答问题,你也可以用以下帐号直接登录

相关问答

关于我们 加入果壳 媒体报道 帮助中心 果壳活动 家长监控 免责声明 联系我们 移动版 移动应用

©果壳网    京ICP证100430号    京网文[2015] 0609-239号    新出发京零字东150005号     京公网安备11010502007133号

违法和不良信息举报邮箱:jubao@guokr.com    举报电话:18612934101    网上有害信息举报专区    儿童色情信息举报专区