引力波到底是一种怎样的存在,现在能探测到了么?

推荐  (0) | 9人关注关注
8个答案
78 31

站内对引力波的讨论还挺多的,有一个挺详细的总结:

链接:https://www.guokr.com/article/441178/ 作者:胡一鸣

引力波探测:于无声处听惊雷



在茫茫人海中,我遇到了你,你遇到了我,从此安定下来,想看两不厌,于是深情地跳起了华尔兹。我们转啊转啊转啊转,越转越近越转越快,华尔兹变成了探戈,舞步也愈加疯狂,更加热烈,直至最后一往情深地合二为一,你中有我,我中有你⋯⋯

别想歪了,我们这里说的不是言情故事,而是宇宙空间中真实存在的物理场景——两个致密的天体,比如中子星或者黑洞,在绕转过程中不断释放引力波辐射并带走动能,直至双星系统并合的过程。


表现两个黑洞绕转的画作。图片来源:NASA

上回我们说到,引力波的测量困难得异乎寻常,这并不是说引力波的源释放的能量微弱。恰恰相反,像上述的致密双星并合过程,应该说是宇宙中最为剧烈的事件之一——它所释放的能量,远远超出太阳一生释放能量的总和,而这么大的能量往往集中在最后的一秒之内爆发,所以在那一刻,整个宇宙中所有别的天体释放功率的总和都及不上它。

天体通过引力波释放的能量往往是惊人的。幸运的是,它几乎不和物质相互作用,这就意味着来自核心区域的信息可以畅通无阻地冲出来,传播到遥远的宇宙空间去。不幸的则是,它几乎不和物质相互作用,也意味着哪怕引力波携带着巨大的能量从探测器经过,也很难留下任何蛛丝马迹。

距离爱因斯坦第一次预言引力波的存在已经过去100年了,在这一个世纪间,脑洞大开的科学家如何于无声处听惊雷,寻找微弱的引力波信号后对应的剧烈物理过程?

韦伯棒

上世纪60年代,美国马里兰大学的约瑟夫·韦伯(Joseph Weber)建造了一个直径一米、长度两米的铝制圆柱体。当引力波经过圆柱体时,引力波会迫使圆柱在不同方向上不断地拉伸和压缩。这会在圆柱体内产生微弱的压力,而通过精密的压电感应器,就可以把这个压力改变灵敏地测量出来。更为巧妙地是,如果引力波的频率恰好和圆柱体本身的特征频率相符,就会引起共振,从而可以测量微弱得多的信号。


引力波经过物体时会使其不断发生拉伸和压缩。图片来源:Markus Pössel of Einstein Online.


在三维情境下,引力波经过时预计会造成这样一幅景象。值得注意的是,这些变化的尺度是非常非常非常小的。图片来源:Markus Pössel of Einstein Online.

1969年,韦伯发表论文宣称,他探测到了引力波信号,稍后,他报告了更多的探测结果。这个消息立刻引发了一大波科学家的热议,许多人也开始搭建自己的共振棒探测器,试图重复韦伯的实验。然而,上世纪70年代的大量观测显示,即使有着比韦伯更精密的仪器,在排除噪音干扰以后,连一个引力波事件都没有探测到。这表明,韦伯之前的所谓观测结果,很有可能只是来自地面的噪声。


韦伯和他的“韦伯棒”。图片来源:physics.umd.edu

虽然韦伯的发现在随后引来了一系列质疑,没有真实的探测也让人无比沮丧,但对引力波的热情已经点燃。从韦伯的教训中,我们或许学会了重要的一课了,那就是理解了数据处理在这个领域中的重要性。当下引力波研究的先驱者LIGO科学合作组织中,有近半数的科学家和科研投入是和数据处理息息相关的。

激光干涉

韦伯的工作吸引了来自不同领域背景的科学家,关于引力波探测,各种有趣的想法也开始涌现。在美国麻省理工学院开设光学相关课程的莱纳·魏斯(Rainer Weiss)心血来潮,提出了用激光干涉的方法测量引力波,并且把这个问题作为课堂作业抛给了他的学生。上世纪初,类似的想法就被用来寻找当时普遍认为的电磁波传播的介质——以太。

简单来说,一束激光在经过一个半透镜后朝向两个互相垂直的方向前进,通过反射镜反射回来并重新汇聚。汇聚后的激光由于干涉而相互抵消,然而一旦引力波经过,改变反射镜与半透镜的距离,干涉现象就会改变,从而测量到引力波。当然,纸上得来终觉浅,绝知此事要躬行。通常激光的波长是微米量级,而要测量的引力波通常却是微米的万亿分之一,真正实现用激光干涉测量引力波谈何容易!

正所谓有意栽花花不开,无心插柳柳成荫。美国加州理工的著名引力学家基普·索恩(Kip S. Thorne)关注到了这个新方法(这名字看着眼熟?还记得两年前的《星际穿越》吗?他是科学顾问兼制片人)。在深思熟虑之后,他发现加上合理的改进,这一方法可以达到比共振探测器高得多的灵敏度。于是,在上世纪 90 年代,由加州理工和麻省理工合作主导的两个激光干涉引力波观测台(LIGO)正式开工建设。在升级了许多新技术以后,更新的高新激光干涉引力波天文台(aLIGO)于去年正式投入运行。两个LIGO探测器,都成巨大的L形,每一边都有4千米长。

在哪找引力波?

看到这里,也许有细心的朋友会有疑问:既然引力波可以改变时空,也就是说尺子的两端也会随着时空而改变长度,用激光去测量微小的距离变化,真的可以测量出来吗?能考虑到这一层着实不易,幸好,LIGO 的专家也不全是吃素的(当然,也确实有不少素食主义者)。早在LIGO建造之前,科学家就推导出了满满的公式。总结下来的意思就是,不管时空如何变化,唯一不变的永远是光速,用激光测量引力波,与其说是用激光当成尺子去量边长的变化,不如说是量光通过每一边时长的变化。巧合的是,在数字上,这个量和把激光当尺子测量的结果别无二致。

就好像声波分成低频的次声波、人耳可以听到的普通频率和高频的超声波,引力波也有频率之分。受限于地球上的诸多噪声,LIGO 可以探测高频的信号,比如双致密天体并合,但是对于频率低于 10 赫兹的引力波爱莫能助。相应的,就有人提出将激光干涉的方法搬到天上去。远离了地球,增加了干涉臂的长度,位于空间的太空激光干涉仪(LISA)的想法随之应运而生。这种低频引力波信号可能来自银河系内的双白矮星的绕转,或者中等质量黑洞的并合。


不同波段下探测引力波的方法,及对应的波源。图片来源:wikipedia.org

空间引力波探测的想法吸引了不少关注,其中也有中国科学家活跃的身影。由罗俊院士倡议的天琴计划就希望发射3颗地球轨道的卫星,在卫星与卫星之间形成激光干涉,从而测量引力波信号。不同于 LISA 的绕日轨道,天琴计划选择的地球轨道将大大降低发射的成本和难度。

除了激光干涉以外,脑洞大开的天文学家还把目光投向了脉冲星。脉冲星的精确计时让瑞士钟表相形见绌,而引力波通过地球和脉冲星之间时,会影响脉冲信号的计时信号。通过测量多个脉冲星的计时数据,天文学家可以等效于把整个银河系当成一个巨大的引力波探测器,当然,所探测的信号频率就要低得多,它能探测到的引力波波长甚至可以达到光年的尺度。在星系的形成过程中两个星系相互并合,而核心的超大质量黑洞也会随之联姻,脉冲星计时所测量的就是这种超大质量黑洞对的绕转了。

慎之又慎

宇宙暴胀时期产生的原初引力波,可以通过研究宇宙微波背景辐射的偏振模式得到。在大爆炸过后的极短时间内,暴胀将极小尺度内的量子真空涨落放大到宇宙学尺度,并产生引力波辐射。这种极低频的原初引力波也影响着宇宙极早期的微波背景辐射,通过识别引力波特有的偏振模式,微波背景辐射的探测有望探测到来自宇宙创生时的第一声啼哭。2013 年,一个名叫BICEP2的团队宣称,他们在南极的微波望远镜揭示了原初引力波的存在证据。可惜的是,后续的研究表明,他们的观测只是星际尘埃引起的噪音。


BICEP2 团队测量的微波背景辐射的B模式偏振。图片来源: kipac.stanford.edu

在科学探索的道路上,永远充满着荆棘。即使智慧如爱因斯坦也不免犯错,霍金在科学上的打赌更几乎逢赌必输。在整整一个世纪的探索引力波的道路上,科学家经历了许多波折,也由此更加谨慎。作为一个拥有近千名科学家的大型合作组织,LIGO科学合作组织对待自己的数据非常谨慎,有些人甚至认为太过谨慎了。由于引力波探测的独特性,一旦LIGO宣布引力波的探测结果,将没有任何办法检验这一论断,所以LIGO科学合作组织需要绞尽脑汁,以便将来一旦发现引力波信号时,可以对信号的真实性有足够的自信。

2010年,还没有升级的LIGO进行了第6次科学运行,同时,位于意大利的VIRGO进行了第2及第3次科学运行。在LIGO和VIRGO联合观测前,事先确定了一个由3个人组成的秘密小组,他们有可能会在数据中人为地注入信号,所有其他成员都无从知晓这一过程的具体信息,所以称之为盲注。

2010年9月16日,LIGO和VIRGO同时探测到一个信号,方向大概来自大犬座,所以代号为“大犬事件”。这一令人激动的信息立刻让LIGO科学合作组织沸腾了。经过大量的研究工作之后,科学家准备好了用以发表的论文和新闻稿。


大犬事件在两个探测器上的数据。图片来源:ligo.org

然而,负责盲注的3人小组这时揭晓谜底: 这个信号的确是他们放的。

应该说,这个过程中消耗了大量科研人员的精力和时间,也让所有的成员都空欢喜一场。但正是有这种严谨小心的态度,LIGO向世人宣布探测结果的那一天才会自信满满,也尽可能避免可能的乌龙局面。

(编辑:Steed)

文章题图:LIGO Scientific Collaboration (LSC) / NASA.




24 6

站内的:https://www.guokr.com/article/441177/

引力波,一个世纪的求索

胡一鸣 发表于 2016-02-10 14:38


400多年前,当伽利略第一次将望远镜指向星空时,一个新的时代开启了。从那时起,天文学家用一个又一个震撼人心的观测不断拓展着人类的视野。经过漫长的发展和技术进步,今天的天文观测早已今非昔比,然而本质上,观测星空的天文学家手里的工具基本上万变不离其宗:用越来越大的口径接收来自天体的光子,并用越来越灵敏的探测器记录它们。

而今年,在爱因斯坦提出广义相对论整整一个世纪的历史性时刻,我们站在了一个新时代的起点:通过位于美国列文斯顿和汉福德的高新引力波探测器,人类有望在不远的将来捕捉到时空的涟漪,用一种前所未有的方式看待这个世界。

那么,什么是引力波呢?

要理解引力波,其实也不难。

用一句话来概括广义相对论,那就是:时空命令物质如何运动,而物质引导时空如何弯曲。当物质的分布改变时,时空也会相应变化,这一变化以光速传播开去,就好像在平静的湖面上丢下一粒小石子,湖面就会有一圈波浪向外荡去,时空也会将涟漪向外传开,这便是引力波了。

关于引力波的强度,爱因斯坦也很快计算了出来——非常微弱。假设迎面走来一串引力波,你会变高变瘦,接下来变矮变胖,再变高变瘦⋯⋯ 当然,想靠引力波改变体型是不可能了,除非你就站在引力波波源附近(友情提醒:黑洞有100种方法让你在它旁边活不下去,如果你想试试,黑洞是不介意陪你玩玩的),否则引力波只会把你的身高拉高(然后压扁)那么一点点——大概就是一个氢原子的100亿分之一吧。


由两个黑洞产生的引力波的3D示意图。图片来源:Henze,NASA

引力波是物理实际吗?

然而,接下来爱因斯坦却犯了难。在引入线性、低速等近似之后,得到的这么一个叫做引力波的东西,到底是数学上的一个游戏,还是一种物理的实际?要知道,通过坐标变换,似乎是可以消除引力波的呀!

回首100年前,那是很少有人能真正理解广义相对论的时代,甚至爱因斯坦本人在一些问题上也犯下不少错误。最著名的例子就是宇宙学常数Λ了。当初为了维持静态宇宙而人为引入的参数,在哈勃用观测事实向世人证明宇宙的膨胀后,被爱因斯坦不无遗憾地承认为其“一生最大的错误”。

在接下来的几年中,爱因斯坦几次修改对引力波的判断。广义相对论的开山鼻祖尚且摸不着头脑,别的科学家更是莫衷一是。引力波强度微弱暂且不论,在它是否存在都有争议的情况下,任何严肃的探测引力波的努力都很难让人信服。

直到 1955 年费曼在一个会议上提出了著名的“粘珠”思想实验后,这一情况才基本尘埃落定。费曼的论证是这样的:想象一个珠子穿在一根柱子上,并且可以自由移动,垂直于柱子方向如果有引力波经过,将会产生相对于柱子中心的引潮力。而珠子在引潮力的作用下会相对柱子运动,如果有摩擦就会产热,所以引力波是物理实际的。一干物理学家要求费曼说人话,于是有一个叫做赫尔曼·邦迪的青年帮费曼总结了一下:引力波在理论上会导致物体摩擦生热,热就是能,它的源头只能是引力波,所以引力波肯定有能量。如果引力波仅仅是一个数学游戏,它不可能无中生有地产生能量,所以它是有物理对应的。


费曼的“粘珠”思想实验。图片来源:wordpress.com

确定引力波是真实存在的物理效应以后,终于可以考虑探测的问题了。

探测引力波,简单来说,很难。

和电磁波相比,引力实在是很弱的力,比起表征电磁力强度的精细结构常数,表征引力强度的引力常数G要小上好几个数量级。而且引力波实在是很“懒”,很少与物质发生任何作用。假设一列引力波以平面波形式传播,在真空的宇宙空间中,它不会有任何衰减,永远传递下去。但如果存在物质,就会与引力波相互作用并吸收一部分引力波携带的能量。

设想宇宙中堆满了番茄酱,正如费曼所指出的那样,引力波经过这堆番茄酱时,多少会损耗一些能量。那么这垛番茄酱砌成的墙得多厚,才能吸收掉 1%的引力波能量呢?1光年?1000光年?100万光年?都不是!答案是,差不多 400万亿光年!要知道,可观测宇宙的尺度也不过是1000亿光年左右。也就是说,要把4000个宇宙首尾相连,堆满番茄酱,当一个引力波穿过之后,也不过才损失了1%的能量(顺便提一下,这个过程需要花上400万亿年)。




16 5

之前爱因斯坦就提出过,最近才被证实的存在

12 11

推荐一本书吧:《爱因斯坦尚未完成的交响乐》,从引力波最基础部分讲起的

查看更多

添加回答

登录 后回答问题,你也可以用以下帐号直接登录

相关问答

关于我们 加入果壳 媒体报道 帮助中心 果壳活动 家长监控 免责声明 联系我们 移动版 移动应用

©果壳网    京ICP证100430号    京网文[2015] 0609-239号    新出发京零字东150005号     京公网安备11010502007133号

违法和不良信息举报邮箱:jubao@guokr.com    举报电话:18612934101    网上有害信息举报专区    儿童色情信息举报专区