数学

死理性派碰面法,100%遇见你

忘了时间的约会还能遇到他吗?忘了约会时间怎么办?

严酷的魔王 发表于  2011-08-30 18:18

在一个周五晚上,甲和朋友乙决定去夜店High一把。但是他们兴奋过头,忘记了约定的具体时间,只记得是在十二点到一点之间。假设他们随机地选择到达夜店的时间,并且都会在店门口等另一个人十分钟(如果在此期间对方并未出现,他就会离开)。那么,他们当晚能见面的概率是多大呢?

 

碰面概率是可以算出来的

让我们看看其中一个人甲是怎么想的。站在甲的角度来说,乙可能会在任意一个时间点出现,因此我们可以通过划分时间段的方法,计算碰面的概率。不妨将这一个小时分成三段时间: 00:00 - 00:10, 00:10 - 00:50,00:50 - 01:00。

在第一个时间段内,朋友到达夜店时间是随机的,平均起来就是00:05,所以只要甲在 00 : 00 – 00 : 15 这15分钟内出现都能和乙碰面,因此碰面的概率是 15/60 = 1/4。

类似的,如果乙在第三个时间段内到达,其平均到达时间就是00:55,那么只要甲在 00 : 45 – 01 : 00 这15分钟内出现都能和他碰面,因此碰面的概率也是1/4。

最后我们来考虑中间那一大段,当朋友在这段时间内到达,他的平均到达时间是00 : 30,甲只要在 00 : 20 – 00 : 40 这20分钟内出现都见到他,因此碰面的概率是 1/3 。

把这三种情况综合起来,第一个和第三个时间段长度分别是总时长的 1/6 ,第二个时间段长度是总时长的 2/3 ,我们就可以得到最终碰面的概率是:

/gkimage/ds/a1/4z/dsa14z.png

上面这种方法是条件概率方法,很经典,但是过程却稍显繁冗,有没有更好的方法?

 

更简单的算碰面概率方法

答案是有的,而且这个简单的方法甚至不需要语言。

/gkimage/wo/66/l7/wo66l7.png

从上图中,你能一眼看出结果么?

如果把甲的到达的时间记在 x 轴上,把乙的到达时间记在 y 轴上,那么他们到达的时间便可以用坐标系中的点 ( x , y ) 来表示,根据设定可知这个点一定会落在图中的正方形区域中。而如果二人想见面,那么他们先后到达的时间间隔一定要小于十分钟,即 | x – y | ≤ 10。

解这个不等式,可得 x – 10 ≤ y ≤ x + 10 。将这两条支线在坐标系中画出来,就能发现它们围成的区域正好是上图的阴影部分。

换言之,如果两人要碰面,对应的到达的时间点 (x,y) 就必须要落在阴影部分内。所以阴影部分的面积与大正方形面积之比就是所要求的概率,据此我们就能很轻松地计算出答案:11/36。

 

死理性派100%碰面法

当然,上述的分析是在两人到达时间是随机的这个条件下作出的。其实,这个问题真正有趣的地方在于,如果两个人都是死理性派,那他们就是忘了约定时间,一样可以同时到达,保证100%的概率碰面!

第一眼看过去,很容易得出这样的结论:你不会选择离00:00或者01:00太近的时间。如果你出现在00:00,那么你的朋友只能在你之后的10分钟内出现才行。

这很好理解,如果甲在00:00出现,就意味着他的朋友必须在接下来的10分钟内到达。相比之下,显然00:01是一个更好的选择——因为这样的话,乙到达的时间就可以在[ 00 : 00 , 00 : 11 ] 这11分钟内选择。 按照这个逻辑,00:02又比00:01出现更加合适……这样的择优选择可以一直类推到00:10这个时刻。同样的,再考虑时间轴的另一端,我们也可以运用如上的择优法则选择出 00 : 50 这个时刻。这样一来,甲就将自己的出现时间从 [ 00 : 00 , 01 : 00 ] 减小到 [ 00 : 10 , 00 : 50 ] 。因为乙也是死理性派,所以他也一定是这样想的(人以群分嘛)。

于是对于他们两个来说,到达的时间区间变短了,而等待时间不变(依然是10分钟),因此碰面的概率一定会有所提高。事实上,根据之前的方法,如果在这个区间两人随机到达,那么碰面的概率便会增加到7/16。

但是推理就到这一步而已吗?不!人们在选择策略时的逻辑推理过程是这样的:

/gkimage/4c/ua/mn/4cuamn.png

所以只去掉一次非优策略后,甲、乙不会停下思考的步伐,他们只有在确定已经筛选不出更优的策略时才会收手。

前面说过,两人通过各自的推理,确定出了一个新的到达时间区间 [ 00 : 10 , 00 : 50 ] ,但这不会是思考的终点。在新的区间里,再次应用之前的逻辑推理,我们便会发现选择在 00 : 10 出现也是不明智的了,因为两人肯定不会在这个时间点之前出现,于是这样选择就等于只留给对方10分钟,因此 00 : 11 更好——相似的逻辑再次出现。与上一轮思考十分相似,这个区间会被缩减至[00:20,00:40]。

写到这里,想必大家都明白了。没错,这个区间仍然有继续缩减的余地:只要这是个区间(而不是一个时间点),就有继续缩减的余地。按照上面的想法,甲、乙最终都会将到达的时间锁定在 00 : 30 上。所以如果忘记约定时间,两个人就会毫不犹豫地在00:30准时出现,成功碰头。

更一般的,如果等待时间不是10分钟,到达的时间区间也可随意设置,根据上面的分析,两个人仍然会选择在这个区间的中点到达。

实际上,这是一个关于时间的博弈,而 00 : 30 就是纳什均衡点:如果都选择在这个时间点出现,那等待时间将缩减为0,见面机会是100%。所以,如果你的那一位也是一个死理性派,那制造一次浪漫的100%偶遇吧。

本文编译自 mind your decision,原文点 这里
全部评论(143)
  • 31楼
    2011-08-30 21:59 speranza
    引用Ekoms的回应:模型过于理想化了啊……

    模型都是理想化的。。。。

    [0] 评论
  • 32楼
    2011-08-30 22:12 Arockzxy

    条件概率

    引用严酷的魔王的回应:
    不是“会”
    是“必须”
    [0] 评论
  • 33楼
    2011-08-30 22:41 木子丹

    哈哈哈哈……飘过,飘过~~~乃们就等着吧XD

    [0] 评论
  • 34楼
    2011-08-30 22:44 Maxwellsdemon 电子工程专业

    赶脚好像那个猜2/3

    [0] 评论
  • 35楼
    2011-08-30 22:55 严酷的魔王 统计学专业本科生,数学控
    引用木子丹的回应:哈哈哈哈……飘过,飘过~~~乃们就等着吧XD


    等着啥……

    [0] 评论
  • 36楼
    2011-08-30 23:11 dwt
    引用严酷的魔王的回应:
    不是“会”
    是“必须”


    等多久都是必须的!

    [0] 评论
  • 37楼
    2011-08-30 23:37 木子丹

    等妹纸啊。。。


    引用严酷的魔王的回应:

    等着啥……
    [0] 评论
  • 38楼
    2011-08-30 23:45
    引用空间了上空间的的回应:

    放這麼小清新的視頻幹嘛啊QAQ

    [0] 评论
  • 39楼
    2011-08-31 00:48 道可

    一直等会不会好点。。。

    [0] 评论
  • 40楼
    2011-08-31 01:01 Cerberus

    如果是滑头鬼之孙里的雪女的话我愿意等一辈子!

    [0] 评论
  • 41楼
    2011-08-31 01:18 鸢尾藤

    要是那么喜欢应该会一直等一直等吧

    [0] 评论
  • 42楼
    2011-08-31 04:54 Creative 机械电子工程、消费产品设计专业

    过于理想化+1

    [0] 评论
  • 43楼
    2011-08-31 07:25 aptx4869

    死理性派肯定会拿出个电话

    [0] 评论
  • 44楼
    2011-08-31 07:43 frog

    感觉有问题啊

    但是他们兴奋过头,忘记了约定的具体时间,只记得是在十二点到一点之间。假设他们随机地选择到达夜店的时间,并且都会在店门口等另一个人十分钟(如果在此期间对方并未出现,他就会离开)。那么,他们当晚能见面的概率是多大呢?

    既然忘了约定的具体时间,那就是说有约定过具体时间。而在0:10-0:50区间中进一步思考的前提除了确定对方是死理性派以外,还要确定对方也不记得约定的具体时间。

    [0] 评论
  • 45楼
    2011-08-31 08:50 Derek同学 软件工程硕士
    引用xyfd的回应:两个死理性派去夜店high?
    这种情形比较奇葩……

    二个谢耳朵一起去夜店讨论物理,快停止这个罪恶的想法= =

    [0] 评论
  • 46楼
    2011-08-31 09:15 尹词

    很有意思。
    8过我也想知道两个死理性派去夜店之后捏?

    [0] 评论
  • 47楼
    2011-08-31 09:41 2006

    就是我们数学试卷上的题目……类似

    [0] 评论
  • 48楼
    2011-08-31 09:44 dark小鸭子

    好复杂~~

    [0] 评论
  • 49楼
    2011-08-31 10:11 maia是砼之炼金术师
    引用ZHen的回应:妹子不是理性派,更不用提死理性了。只能一直比妹子早···

    死理性派妹子不会忘记约定时间

    [0] 评论
  • 50楼
    2011-08-31 11:22 乱逛

    要两个人都忘了时间才行,无语了

    [0] 评论
  • 51楼
    2011-08-31 11:22 Johan

    那句人以群分解释了一切

    [0] 评论
  • 52楼
    2011-08-31 12:11 花落tuiytyh

    哎呀,哎呀,我头晕···不过看了命题之后第一反应是00:30这个时间

    [0] 评论
  • 53楼
    2011-08-31 12:29 桔。年

    啊啊 ~~~看到了熟悉的线性规划~~~感动~~

    [0] 评论
  • 54楼
    2011-08-31 12:44 小强终结者

    其实这文章里所讲的。。。。。。我们老师高一就讲过了。。。。这是一道高考可能考的概率题。。。。

    [0] 评论
  • 55楼
    2011-08-31 12:54 晒手心

    看完了不知道有咩意义?

    [0] 评论
  • 56楼
    2011-08-31 14:21 tianchao

    不过这种情况如果是我的话确实会00:30分的时候去。

    [0] 评论
  • 57楼
    2011-08-31 15:28 万俟麻木

    这个好

    [0] 评论
  • 58楼
    2011-08-31 17:29 MooMooM

    扯淡

    [0] 评论
  • 59楼
    2011-08-31 18:42 无尾猫熊

    为什么不用手机?!!!!

    [0] 评论
  • 60楼
    2011-08-31 20:31 SpaceBlanco

    这分明是高中数学题~

    [0] 评论

显示所有评论

你的评论

登录 发表评论

严酷的魔王
严酷的魔王 统计学专业本科生,数学控

作者的其他文章

更多科研事,扫码早知道

关于我们 加入果壳 媒体报道 帮助中心 果壳活动 家长监控 免责声明 联系我们 移动版 移动应用

©果壳网    京ICP证100430号    京网文[2015] 0609-239号    新出发京零字东150005号     京公网安备11010502007133号

违法和不良信息举报邮箱:jubao@guokr.com    举报电话:18612934101    网上有害信息举报专区    儿童色情信息举报专区